Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis
نویسندگان
چکیده
Hemibiotrophic pathogens are some of the most destructive plant pathogens, causing huge economic losses and threatening global food security. Infection with these organisms often involves an initial biotrophic infection phase, during which the pathogen spreads in host tissue asymptomatically, followed by a necrotrophic phase, during which host-cell death is induced. How hemibiotrophic pathogens trigger host necrosis and how plants inhibit the transition from the biotrophic stage to the necrotrophic stage in disease symptom expression are mainly unknown. The rice blast fungus Magnaporthe oryzae spreads in rice biotrophically early during infection, but this biotrophic stage is followed by a pronounced switch to cell death and lesion formation. Here, we show that the M. oryzae effector AvrPiz-t interacts with the bZIP-type transcription factor APIP5 in the cytoplasm and suppresses its transcriptional activity and protein accumulation at the necrotrophic stage. Silencing of APIP5 in transgenic rice leads to cell death, and the phenotype is enhanced by the expression of AvrPiz-t. Conversely, Piz-t interacts with and stabilizes APIP5 to prevent necrosis at the necrotrophic stage. At the same time, APIP5 is essential for Piz-t stability. These results demonstrate a novel mechanism for the suppression of effector-triggered necrosis at the necrotrophic stage by an NLR receptor in plants.
منابع مشابه
Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease.
Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice ...
متن کاملThe Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice.
Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the sp...
متن کاملPathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies
Understanding how fungi specialize on their plant host is crucial for developing sustainable disease control. A traditional, centuries-old rice agro-system of the Yuanyang terraces was used as a model to show that virulence effectors of the rice blast fungus Magnaporthe oryzaeh play a key role in its specialization on locally grown indica or japonica local rice subspecies. Our results have indi...
متن کاملMagnaporthe oryzae Glycine-Rich Secretion Protein, Rbf1 Critically Participates in Pathogenicity through the Focal Formation of the Biotrophic Interfacial Complex
Magnaporthe oryzae, the fungus causing rice blast disease, should contend with host innate immunity to develop invasive hyphae (IH) within living host cells. However, molecular strategies to establish the biotrophic interactions are largely unknown. Here, we report the biological function of a M. oryzae-specific gene, Required-for-Focal-BIC-Formation 1 (RBF1). RBF1 expression was induced in app...
متن کاملThe reaction of 109 rice lines to blast disease
Shahbazi H, Tarang A, Padasht F, Hosseini Chaleshtari M, Allah-Gholipour M, Khoshkdaman M, Mousavi Qaleh Roudkhani SA, Nazari Tabak S, Asadollahi Sharifi F, Pourabbas Dolatabad M (2022) The reaction of 109 rice lines to blast disease. Plant Pathology Science 11(1):24-35. Doi: 10.2982/PPS.11.1.24. Introduction: Blast caused by Pyricularia oryzae is the most important fungal disease of ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016